Effectiveness of Clinical Trials Designs for Drug Development

Qing Liu

J&J Pharmaceutical Research and Development

BASS XI November 1-3, 2004

Sample Size Calculation

- Who's done it?
- What's involved?

Effect size

Variance, control rate, etc.

Power

• How large should the power be?

80% or 90%

Higher power is better

Smaller sample size is more efficient

Success Rates in Drug Development

Stage	PWC	DiMasi et al*
Preclinical	60%	
Phase I	64%	71%
Phase II	39%	44%
Phase III	62%	68%
Regulatory	82%	

*DiMasi et al. J of Health Economics, 22, 151-185

Choice of Power

- Combined phase 2 and 3 success rate 40% x 60% or about 25%
- What's the optimal power when the drug is not effective?
- Would nearly 100% power be optimal if the drug is effective?
- Should the power be different depending on stage of development or prior success rate?
- What design should be employed?

Cash Flow of a Single Pharmaceutical Product

Dollars in Millions

Asset Valuation

Basic architecture

- 1. Probability of success
- 2. Expected return if successful
- 3. Cost of development
- 4. Time to market

Reference

- 1. Senn S. (1996). Some statistical issues in project prioritization in the pharmaceutical industry. *Statistics in Medicine* 15, 2689-2702.
- 2. Senn S. (1998). Further statistical issues ... Drug Information Journal 32, 253-259.
- **3.** Burman, C. F. and Senn S. (2003). Examples of option values in drug development. *Pharmaceutical Statistics* **2**, 113-125.

Asset Valuation

• **Probability of success** $p(n) = p_1 p_2(n) p_3 p_4$

- *1.* p_1 probability that drug is efficacious
- *2.* $p_2(n)$ power, increasing with sample size *n*
- *3.* p_3 probability that drug is safe
- *4.* p_4 probability of regulatory success

Cost of development *C(n)* – cost of development in present value, increasing in sample size

Asset Valuation

Expected return if successful

- 1. $t_1(n)$ time of entry to market
- *2.* t_2 time of patent expiration
- *3.* r_t expected return at time *t* in present value, estimated based on information available at time zero
- 4. S(n) total expected return, sum of s_t over the period between $t_1(n)$ and t_2
- Expected net present value (NPV)

NPV(n) = S(n) p(n) - C(n)

Pearson Index

 $\mathrm{PI}(n) = \mathrm{NPV}(n) \ / \ C(n)$

Difficulties With the Pearson Index

Example

· δ = 0.3, σ = 1, α = 0.025, p_1 = 0.5, p_3 =

$p_4 = 1$	Standard	Max. PI
Power	0.90	0.55
Sample Size	468	192
PI	2.56	3.88
NPV (mil.)	69.16	54.74
Cost (mil.)	26.97	14.12

9

Pearson Index for Single-stage Designs With Prior = 0.50

Sample Size

Benefit-risk Evaluation

Value-at-Risk (VaR)

C(0) – Prior cost incurred C(n) – Cost to be incurred VaR(n) = C(0) + C(n)

• Gain

 $G(n) = \max\{0, S(n) - \operatorname{VaR}(n)\}I \text{ or } 0$

Loss

$$\begin{split} L(n) &= \max\{0, \operatorname{VaR}(n) - S(n)\}I + \operatorname{VaR}(n)(1-I) \ or \\ \operatorname{VaR}(n) \end{split}$$

Benefit-risk Evaluation

Benefit

 $B(n) = \max\{O, S(n) - \operatorname{VaR}(n)\}p(n)$

Risk

$$\begin{split} R(n) &= \max\{0, \operatorname{VaR}(n) - S(n)\}p(n) \\ &+ \operatorname{VaR}(n)\{1 - p(n)\} \end{split}$$

Expected Cash Flow

 $\mathrm{CF}(n) = B(n) - R(n) = S(n)p(n) - \mathrm{VaR}(n)$

Benefit-Risk Ratio

BR(n) = B(n) / R(n)

Benefit-risk Evaluation

- Comparing Two Designs d_1 and d_2 Let $CF(d_1) \le CF(d_2)$. d_1 is more effective than d_2 iff
 - $BR(d_1) \ge BR(d_2)$ and
 - $\cdot \quad C(d_1) < C(d_2).$

Otherwise, d_2 *is more effective than* d_1

Most Effective Design for a Class D

Design d in D is most effective iff it is more effective than any other design in D*

Expected Cash Flow for Singe-Stage Design

14

Most Effective Single-stage Design Standar Max. PI Max. BR Max. CF

	d			
Power	0.90	0.55	0.76	0.84
N	468	192	319	389
PI	2.56	3.88	3.45	3.04
NPV	69.16	54.74	69.27	70.96
Cost	26.97	14.12	20.09	23.34
Benefit	81.74	63.63	79.77	82.34
Risk	17.56	13.87	15.51	16.43
Cash	64.16	49.74	64.27	65.86
FIOW				
BR	4.65	4.58	5.14	5.02

Two-stage Design With Futility

Futility Criteria

- $\beta^* = 0.05$ and given n_1
- Futility level $1 \alpha^*$ with $P_{\delta} \{ Z_1 \ge Z_{\alpha^*} \} = 1 \beta^*$
- Stop for futility if $Z_1 < Z_{\alpha^*}$

Test Procedure

- Test Statistic $Z = \lambda^{1/2} Z_1 + (1 \lambda)^{1/2} Z_2$
- Reject the null if $Z \ge z_{\alpha}$
- Choice of *n*₂
 - Most effective n_2 given $Z_1 \ge z_{\alpha^*}$
 - Stop with n_{20} , number of patients already entered

Two-stage Adaptive Design

- Conditional Critical Value and Error
 - $z(z_1) = (z_{\alpha} \lambda^{1/2} z_1) / (1 \lambda)^{\frac{1}{2}}$
 - $A(z_1) = 1 \Phi_{\{z(z_1)\}}$
- Conditional Test

 $Z_2 \ge z(z_1)$

Conditional Single-stage Design

Conditional on $Z_1 = z_1$ the second stage can be treated as a single-stage design with type I error rate $A(z_1)$

• Choice of *n*₂

- Most effective n_2 given $Z_1 = z_1$ for $z_1 \ge z_{\alpha^*}$
- Stop with n_{20}

Most Effective Design

Comparison of Designs

	Opt SSD	Opt TSD	AD*	Opt AD
Power	0.76	0.79	0.78	0.79
Ν	319	323.4	325.29	329.5
PI	3.45	3.45	3.59	3.57
NPV	69.27	70.06	73.10	73.36
Cost	20.09	20.29	20.36	20.55
Benefit	79.77	79.77	83.20	83.51
Risk	15.51	14.71	15.10	16.15
Cash	64.27	65.06	68.10	68.35
Flow				
BR	5.14	5.42	5.5097	5.5112

Conditional Measures of Adapted Two-stage Design

Extensions

Monetary model

- 1. Monetary benefit and risk
- 2. Pharmaceutical industry for portfolio management

Health-economic model

- 1. Monetary cost and health related benefit
- 2. CMS or NIH
- Ethical Model

Health related cost and benefit

Personal Model

Conclusion

- Neyman-Pearson theory not suitable for project evaluation
- Adaptive designs can be more effective
- Static designs should always include the option to adapt
- Adaptive designs are broader, including phase 2/3 combination designs, which are less costly and time-consuming to traditional clinical development paradigm